388
Biology and Biotechnology of Environmental Stress Tolerance in Plants, Volume 3
Berr, A., Shafiq, S., & Shen, W. H., (2011). Histone modifications in transcriptional activation
during plant development. Biochim. Biophys. Acta Gene. Regul. Mech., 1809(10), 567–576.
Bewick, A. J., Ji, L., Niederhuth, C. E., Willing, E. M., Hofmeister, B. T., Shi, X., Wang, L., et
al., (2016). On the origin and evolutionary consequences of gene body DNA methylation.
PNAS., 113(32), 9111–9116.
Bhadouriya, S. L., Mehrotra, S., Basantani, M. K., Loake, G. J., & Mehrotra, R., (2020). Role
of chromatin architecture in plant stress responses: An update. Front Plant Sci., 11, 603380.
Bird, A., (2007). Perceptions of epigenetics. Nature, 447(7143), 396.
Bojórquez-Quintal, E., Escalante-Magaña, C., Echevarría-Machado, I., & Martínez-Estévez,
M., (2017). Aluminum, a friend or foe of higher plants in acid soils. Front Plant Sci., 8,
1767.
Bornman, J. F., (1991). UV radiation as an environmental stress in plants. J. Photochem.
Photobiol. B., 8(3), 337.
Boyer, J. S., (1982). Plant productivity and environment. Science, 218(4571), 443–448.
Brant, E. J., & Budak, H., (2018). Plant small non-coding RNAs and their roles in biotic
stresses. Front Plant Sci., 9, 1038.
Bratzel, F., López-Torrejón, G., Koch, M., Del Pozo, J. C., & Calonje, M., (2010). Keeping
cell identity in Arabidopsis requires PRC1 RING-finger homologs that catalyze H2A
monoubiquitination. Curr. Biol., 20(20), 1853–1859.
Bui, L. T., Shukla, V., Giorgi, F. M., Trivellini, A., Perata, P., Licausi, F., & Giuntoli, B.,
(2020). Differential Submergence Tolerance Between Juvenile and Adult Arabidopsis
Plants Involves the ANAC017 Transcription Factor. bioRxiv 02.12.945923. https://doi.
org/10.1101/2020.02.12.945923.
Burianov, I., Eroshina, N., & Vagabova, L., (1972). In On the Detection of 6-Methylaminopurine
in DNA of Higher Plant Pollen (Vol. 206, pp. 992–994). Akad Nauk SSSR Dokl.
Buszewicz, D., Archacki, R., Palusiński, A., Kotliński, M., Fogtman, A., Iwanicka‐Nowicka,
R., Sosnowska, K., et al., (2016). HD2C histone deacetylase and a SWI/SNF chromatin
remodeling complex interact and both are involved in mediating the heat stress response in
Arabidopsis. Plant Cell Environ., 39(10), 2108–2122.
Cao, X., & Jacobsen, S. E., (2002). Role of the Arabidopsis DRM methyltransferases in de
novo DNA methylation and gene silencing. Curr. Biol., 12(13), 1138–1144.
Cao, X., Wu, Z., Jiang, F., Zhou, R., & Yang, Z., (2014). Identification of chilling stress-
responsive tomato microRNAs and their target genes by high-throughput sequencing and
degradome analysis. BMC Genomics, 15(1), 1–16.
Carvalho, L. C., & Amâncio, S., (2019). Cutting the gordian knot of abiotic stress in grapevine:
From the test tube to climate change adaptation. Physiol. Plant., 165(2), 330–342.
Chan, S. W. L., Henderson, I. R., & Jacobsen, S. E., (2005). Gardening the genome: DNA
methylation in Arabidopsis thaliana. Nat. Rev. Genet., 6(5), 351–360.
Chang, Y. N., Zhu, C., Jiang, J., Zhang, H., Zhu, J. K., & Duan, C. G., (2020). Epigenetic
regulation in plant abiotic stress responses. J. Integr. Plant Biol., 62(5), 563–580.
Chen, L. T., & Wu, K., (2010). Role of histone deacetylases HDA6 and HDA19 in ABA and
abiotic stress response. Plant Signal. Behav., 5(10), 1318–1320.
Chen, X., Ge, X., Wang, J., Tan, C., King, G. J., & Liu, K., (2015). Genome-wide DNA
methylation profiling by modified reduced representation bisulfite sequencing in Brassica
rapa suggests that epigenetic modifications play a key role in polyploid genome evolution.
Front. Plant Sci., 6, 836.